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The SCNNC ring is of particular interest in this 
investigation. The atoms S(1), N(3), N(4) and C(5) lie 
within 0.02/k of a plane whose equation is 

1.8422x - 1.8020y + 11.641z = 1.7113, (5) 

referred to the triclinic axes and where the quantity on 
the right hand side of the equation is the origin-to-plane 
distance in/~.  Atom C(2), however, is 0.58/~ out of 
the plane. The puckering of the ring is similar to that 
found in saturated five-membered rings composed of 
all carbon atoms. The two adjacent nitrogen atoms in 
the ring are quite different from each other. The bonds 
to N(3) form tetrahedral angles whereas the bonds to 
N(4) lie in a plane. Furthermore, the bond distance 
C(2)-N(3) is 1.51/~, a value near that found in satur- 
ated compounds while the C(5)-N(4) distance is much 
shorter, 1.35/k. The latter value for C-N is character- 
istically found in compounds where C-N is adjacent to 
C =  S as in thiourea (Kuncher & Truter, 1958) and its 
derivatives (Dias & Truter, 1964). Apparently the pres- 
ence of the C =  S has a profound effect not only on 
the neighboring nitrogen atom, N(4), but also on the 
neighboring sulfur atom, S(1). The two C-S distances 
in the ring are also considerably different from each 
other, 1.78 and 1.84 A, with the lower value adjacent 
to the C =  S. The C = S distance, 1.65 ~ ,  is somewhat 
shorter than that found in thiourea derivatives, 1.72/k 
(Dias & Truter, 1964). 

The usual values have been obtained for the bond 
distances and angles in the benzyl and methoxyphenyl 
substituents. The equations for the least-squares planes 
through rings I, II, and III are, respectively, 

and 

7.2663x-4"3274y-  2"1285z= 1"2524 (6) 
-1"8937x-3"3007y+ 11.835z= 0-1323 (7) 

7"4924x-4"6072y- 0"3992z = - 1"9598, (8) 

where the x, y and z values refer to coordinates in the 
triclinic system. 

The thermal motion of the atoms in ring I is con- 
siderably greater than that of atoms in the other rings. 
The thermal parameters increase for atoms C(9), C(10), 
C(l l) ,  C(12) and C(13) as their distance from C(8) 
increases. The electron density map (Fig. 1) shows the 
effect of the thermal motion on these atoms. 

The nearest intermolecular approaches are 0(27)- 
C(17') at 3.30/~, O(27)-C(18') at 3.66/~, C(28)-C(20") 
at 3.59 •, and S(6)-C(20"') at 3.62/~. 

We wish to express our appreciation to Mr Stephen 
Brenner, who performed all the high-speed machine 
calculations. 
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Calculation of Exact Transmission Factors for Crystals with Constant Cross-Section 
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Formulae for the calculation of exact transmission factors are derived by the block-mosaic method. 
The solutions of the integral for a cross-section are presented in a form which relates the area aqr of 
a block to the paths of the X-rays diffracted at the corners of the a~r. The use of the formulae is sim- 
plified if the a~r'S are divided into triangles and parallelograms. The formulae are suitable for applic- 
ation to automatic computers. 

Introduction 

The intensities of the reflexions in X-ray diffraction 
patterns are affected by absorption. An exact evalua- 
tion of the absorption factor (or of the transmission 
factor) is needed to obtain good accuracy in structure 
determinations (Jeffery & Rose, 1964). 

The transmission factor is usually defined as 

A =  --zl l~exp ( - l d ) d z  (1) 

in which l represents the length in cm of X-ray path 
in the crystal,/z is the absorption coefficient in cm -1 
and z can be either an area or a volume. The integral, 

A C 19 -- 7* 
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P 
l exp (-lul)d'r, (2) Te = 

can be considered as the equivalent diffracting area 
(e.d.a.) or the equivalent diffracting volume (e.d.v.). 

Either the cross-section of the crystal or the whole 
crystal can be subdivided into a mosaic of blocks. In 
a cross-section each block is identified by the indices 
q, r whose meaning will be explained later. 

Each block of the cross-section and its area are de- 
signated as aqr, its equivalent diffracting area as (e.d.a.)qr. 

The integral (2) can be represented in the block- 
mosaic method (Ferrari, Braibanti & Tiripicchio, 1965) 
by 

Se = ~ q Z r  laqrexp ( - I d ) d a .  (3) 

This follows from the condition that the function to 
be integrated is continuous only within each block, a 
condition which is, strictly speaking, not satisfied by 
the method used by Busing & Levy (1957). They assume 
that the integrand function is approximately continuous 
over the whole crystal. 

Approximate solutions of the integral (3) for special 
cases of highly absorbing crystals have been derived 
(Ferrari, Braibanti & Tiripicchio, 1961, 1965). An 
exact solution of it has now been found in a form 
which holds for every type of cross-section contour 
and all values of linear absorption coefficient. This 
solution is suitable for use on electronic computers. 

Consider a crystal cross-section parallel to the plane 
formed by the incident and diffracted rays (Fig. 1). 
The corners Pj are numbered anticlockwise, the angles 

> 

(~r and the face vectors, fj = P j ' - I -P j ,  are defined fol- 
lowing the conventions assumed in a preceding paper 
(Ferrari, Braibanti and Tiripicchio, 1965). The angles 
~,j. and ~0j (for example, ~u4 and ~04 in Fig. l) give the 
orientation of the fj's (or of the unitary vectors tj) 
with respect to the direction of the incident and dif- 
fracted rays, represented by the unitary vectors i and 

d respectively. The sides of the cross-section, i.e. the 
faces of the crystal, whose representative vectors fj 
form with i an angle 9'J such that n < 9'J < 2n, can be 
numbered anticlockwise from - i  to i, and a set r ( r= 
1,2,3,. . .)  is obtained; these faces are 'illumined' by 
the incident rays, i.e. the incident rays enter the crystal 
through these faces. The faces whose representative 
vectors form with d an angle ~0j for which 0 < cpj < n 
are ordered in a clockwise set q(q= 1,2,3, . . . )  from - d  
to d; they are 'illumined' by the diffracted rays, i.e. the 
diffracted rays leave the crystal via these faces. The 
vectors of the two sets become fj(q) and fj(r), respec- 
tively. 

The incident rays passing through the extreme points 
of faces r and the diffracted rays passing through the 
extreme points of faces q delimit the blocks of the 
mosaic. All the incident rays arriving at points of one 
block enter the crystal through the same side r and 
leave the crystal through the same side q, therefore 
the area of the block can be designated aqr. Observe 
that q and r are interchanged with respect to the pre- 
ceding paper (Ferrari, Braibanti & Tiripicchio, 1965). 

For exact calculations the angles 6~ need to be cal- 
culated for each reflexion hkl  because, when l:/:0, the 
cross-section is differently inclined with respect to the 
edges of the crystal. It will be shown however that the 
components of the fj's along the reference axes give 
the same information as the angles &¢, gj, and cpj, 
provided the axes are properly chosen. 

If the crystal cross-section is referred to a system of 
axes (Fig. 2), with the x axis having the same direction 
and sign as i and with the y axis having the same direct- 
ion and sign as d, the points Pj can be represented by 
vectors from the origin, 

pj= xji + yjd , (4) 

where i and d are unit vectors. In order to find the 
components of pj, the coordinates of the edges and of 
the corners of the crystal must be referred at first to a 
standard system of axes; then rotations are applied 
to the axes to get the required final reference system. 

~ r 2  .," / 

- . . . . .  ~ r 3  ~ 

(a) (b) 

Fig. 1. Faces of the crystal cross-section 'illumined' by the incident rays (faces r) and faces 'illumined' by the diffracted rays 
(faces q). 

(a) Cross-section contour represented by vectors fj. 
(b) Vector fan formed by the unitary vectors t~ corresponding to the vectors f~. 
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The initial standard system and the rotations can be 
those used by Wells (1960), or others equivalent. It 
can be assumed here that the coordinates of Pj (i.e. 
the components of pj) are referred to the proper final 
system of axes. 

The vectors f~ can be obtained by 

f j = p j - - p j _ l = ( X j - - X j _ l ) i q - ( y j - - y j - 1 ) d  , (5) 

and because they can be ordered into two sets fj(q) 
and fj(r), their extreme points also become pj(q) or 
pj(r). In other words, those pj's which appear in each 
of the equations (5) defining the vectors fj(q), and those 
which appear in the equations (5) defining the vectors 
fj(r), can be ordered into two sets, one set, [pj(q)], with 
the components xj increasing, and the other, [pj(r)], 
with the components yj decreasing. Obviously the same 
sets hold for the coordinates of the P/s.  The same pj 
can belong to both sets at the same time. The pj(q) 
with the lowest xj is Pj(q0) and the pj(r) with the highest 
yj is pj(r0); the f~(q)'s and the fj(r)'s can be obtained by 

and 
fj(q) = pj(q - 1 )  -p j - l (q )  

fj(r) = pj(r) - pj-l(r - 1), 

(6) 

(7) 

and the numbering of the sets fj(q) and fj(r) is consi- 
stent with the numbering of the sets pj(q) (clockwise) 
and pj(r) (anticlockwise). It is worth noting that the 
sign of sin g/~ changes with the sign of the component 

f u j = ( y j - y ~ - l )  of the f~'s and the sign of sin (~p~-zc) 
with the sign of the component f x j = ( x j - x j - ~ ) .  The 
assignment of the vectors fj to the sets q and r can, 
therefore, be done directly by mean of the signs of 
their components. 

Calculation of (e.d.a.)qr 

The path l of an X-ray in the crystal is expressible by 
the same function in the whole aqr (see Appendix); so 
each (e.d.a.)qr can be calculated exactly. 

Special cases arise only when one or more sides of 
the contour of the aqr coincide with the loci o f  constant 
path length. 

d 

.PI! 1:2 P2: 

Fig. 2. Blocks aqr of the mosaic in a crystal cross-section. 
Relation of vectors fj(q) and f~(r) to vectors pj(q) and p~(r) 
[and to points Pj(q) and P~(r)]. 

As a general rule, the (e.d.a.)qr is obtained as the sum 
of as many terms as there are corners of the aqr. For 
any aqr whose contours are not loci of constant path, 
each term is of the form: (A/B) exp ( - C ) .  For the nth 
corner, 
A is the area of the parallelogram built on the two 

sides of aqr adjacent to the corner. 
B is the product ( ln- ln+l) ( ln- ln-1)  of the differences 

of X-ray path between the nth corner and the two 
adjacent corners. 

C is ltln, i.e. the path (multiplied by/z) of the X-ray 
path at the nth corner. 

The general expression for each (e.d.a.)qr is therefore, 

1 ~ Sn exp (-l-tin) (8) 
(e.d.a.)qr= --~ 1 H~ ( ln - l e )  ' 

where n indicates the corner and k the corners n - 1  
and n + 1 adjacent to n; Sn is the area in square centi- 
meters of the parallelogram built on the two sides, 
adjacent to n. The corners n are numbered consecutively 
either clockwise or anticlockwise. If aqr is subdivided 
arbitrarily into smaller areas of whatever convex po- 
lygonal contour, the (e.d.a) of each small area can be 
calculated by applying (8) in exactly the same way to 
its n vertices. The whole (e.d.a.)qr can then be obtained 
by summing the (e.d.a.)'s of all the small areas. 

The path of the X-ray at any point A (Fig. 3) of the 
cross-section is given by the relation: 

la=(XA_Xr_l)_(Xr_Xr_l) (Ya--Yr-1) -b (Yq-I--YA) 
(Yr --Yr-l) 

+ (yq--yq-O(XA--Xq-a).  (9) 
(xq-xq-,) 

Yr and Yr-1 [Yr>YA>Yr-1 in the set Pj(r)] are coordin- 
ates of the extreme points of the entrance side; xq and 
xq-x [xq > xa > Xq-1 in the set Pj(q)] are coordinates of 
the extreme pbints of the exit side. The coordinates are 
intended to be referred to a system of axes with x 
having the direction and the sign of i, and with y having 
the direction and opposite sign of d. 

If the area aqr is subdivided into triangles and paral- 
lelograms, for example by means of straight lines paral- 
lel to x and y (Fig. 3), Sn is constant for each triangular 
zone (t.z.) or parallelogram zone (p.z.), and the expres- 
sion (8) becomes for a triangular zone: 

1 n?3 exp (--pin) . (10) 
(e .d .a . ) t . z .=Sn-~,=a He(In- Ix )  ' 

and for a parallelogram zone: 

~2 n? 4 exp (- luln) 
(e.d.a.)p.z. = Sn ,,= 1 H1c(ln - l~) (11) 

The area Sn is given by: 

s n  = I ( x n  - Xn-1)(Y.+l --Yn) 
-(Xn+a-Xn)(yn-Yn-1)[ sin 20. (12) 

When a contour of the t.z. or p.z. coincides with a 
locus of constant path, the expressions (10) and (11) 
give rise to the following special cases: 
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(i) For  a tr iangular zone: 

if l ~ z - - 1  : ln+l, 
(e.d.a.)t.~. = Sn [exp (_-/xln+l) 

\ It(In--In+l) 

e x p ( - / d n ) - e x p  ( - / t in+ i )  ] . 
or (13) 

luZ(ln - ln+OZ } 
if In = ln+a = ln-i , 

(e.d.a.)t .z .=Sn exp (-lain)~2 (14) 

(ii) For  a paral lelogram zone: 

if In =ln+l and ln-a = ln+z, 

(e.d.a.)p.z.-  1 Sn exp ( - l a l n - O - e x p  ( - tu ln)  ; (15) 
I.t (In - ln -1 )  

if  In = ln+a = ln-1 , 

(e.d.a.)~.~. = Sn exp ( - I d n )  (16) 

The formulae found by Evans (1952) for some types 
of areas are equivalent to formulae (10), (11), (13). In 
fact, Evans's  formula I corresponds to (11), his for- 
mulae III, IV and V to (10), and his formulae II, IIIa, 
IIIb, IVa, IVb to (13). 

It can be demonstrated also that  the formulae given 
in a preceding paper (Ferrari,  Braibanti & Tiripicchio, 
1965) are particular cases of the present formulae. 

The formulae (13) and (14) for triangular zones and 
the formulae (15) and (16) for parallelogram zones give 
the (e.d.a.)qr when equalities arise between the paths of 

1 

i I 
I I 
I I 

I j i ,%. 
i i ~ 7 #  7 ~ , - -  
t L I t ; J ' Q v " O ~dv---'~, 

t , o  

A <  , , 1 " - . .  

i I 
r t /  i I ~ P ,  ' " 

,. / I I "t "~ i' 
i " - /  z I I "-. / 
I " " - ,  
1 ,~ ."~, , i .<,v..../.. - . - . .  / 
~:"'.;._ "'-.:.o " / -?  "¢.*~-a. / " ' -  / " 

c qi% 

4 - v  

Fig. 3. X-ray path in the crystal at a point A. Subdivision 
of the block az,z into triangular (I, III) and parallelogram 
zones (II). 

the X-rays at the corners of  the zone. For  path lengths 
nearly equal, formula (11) and formula (12) tend to 
indeterminate values. In order to overcome this diffi- 
culty we have searched for a special function capable 
of representing, at least in a given interval, all the three 
formulae for tr iangular zones; another  function was 
sought for parallelogram zones. Such an expression 
for triangular zones is 

(e.d.a.)t.z. = Sn exp ( - / i l l  or ~) ,  (17) 
where 

c~ = - 0.69315 + al X or a2 X2 or a3 Y +  a4 y2 o r a s X Y  

ora6X2yora7Xy2orasX2Y 2 (18) 

and is a function of  X=lz(12-la)  and Y=l t (13- lO;  la 
must be the shortest of the three paths and moreover  
la<12<_13, e x p ~ = f ( X , Y )  can be considered as a 
weighting function. The expression (17) holds for tri- 
angular zones, provided that  the corners are numbered 
clockwise or anticlockwise to comply the rules speci- 
fied earlier. 

For  a parallelogram zone an analogous expression 
is obtained: 

(e.d.a.)~.z.=Sn exp ( - la l l  +fl) , (19) 
where 

fl = bx X + b2X 2 + b3 Y +  b4 yz  or b s X Y  
+ b6X 2 y +  b7Xy2 + bsX2 y2 (20) 

and is a function of X=lu(la- l l )=lz(13-12)  and Y=  
l t(12-10=lz(la-13).  The weighting function is now 
f ( X ,  Y) = exp ft. The relation is valid if /1 < 12 </4 _< 13 
with corners numbered consecutively, clockwise or 
anticlockwise, to satisfy the required order of paths. 

A program, where the formulae and principles of  
this paper have been applied, has been prepared for 
an Olivetti Elea 6001 computer,  and it will be presented 
shortly in detail. 

The extension of  the procedure to crystals in three 
dimensions is not very different from the procedure for 
a cross-section. 

We wish to thank Prof. A. Ferrari  for constant  en- 
couragement  and the Consiglio Nazionale delle Ri- 
cerche, Rome for financial aid. 

A P P E N D I X  

For the area Dt' l lO (Fig. 4) the (e.d.a.h,2 can be cal- 
culated as follows: 

The incident rays enter the crystal through PaPa and 
the diffracted rays leave the crystal via PAP2; the 
reference system is assumed as in the figure. 

The path of an X-ray in the crystal is (in cm) 

l=  a(x pa - x) + b(YPi - y) , (21) 
where - sin 6, 

a = (22) 
sin ( 6 1  - -  I / / 2 )  

and - cos 61 1 
b = (23) 

sin (6a - ~'2) sin O2 
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The value of the integral (2) for the area DPIlO can 
be calculated and reduced to the form: 

-i 
-d  

d 

t~. 

x 
Fig. 4. Calculation of (e.d.a.)DPlXO. General case. 
ID=DN+NT, lo=PaO+OP2, D=P4I, Ipl=O 

(e.d.a.)DPlrO _1[ ~2 0D  DP~ sin ODP1 exp ( - p l g )  
• (ID_Io)(ID_I[h) 

+ DPi • PII sin DPII exp (-/llP1) 
(lp, -l~)(lvl -/i) 

+ Psi.  I0  sin P:IO exp( - /d i )  
(l~-l;~)(b-lo) 

exp (-/Jlo) 1 
+ IO.  OD sin IOD (lo-lx)( lo-lD) . '  (24) 

where lz~, lP1, li, lo are path lengths at the corner of 
the area. Expression (24) is independent of the refer- 
ence system and depends only on the contour of the 
area. The total (e.d.a.)2,2 is of the form (A/B) exp ( - C), 
each corner contributing one term to the sum. 
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The Crystal Structure of Calcium 5-Keto-n-Glueonate (Calcium o-xylo-5-Hexulosonate) 

BY A.A. BALCHIN* AND C. H. CARLISLE 
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(Received 14 August 1964) 

Crystals of calcium 5-keto-D-gluconate, Ca(C6H907)2.2H20 are monoclinic, space-group A2, with 

a=9.39, b= 8.03, c= 12.37/~; fl= 107"9°; Z=2. 

The structure, determined by three-dimensional Fourier methods, exhibits a lactol arrangement of 
the 5-keto-D-gluconate ion, with eightfold coordination of the calcium atom (Ca-  O, 2.46 A; C a -  H20, 
2.39/~). The metal ion is chelated by two organic ions. The molecules form strongly bonded sheets, 
parallel to the (100) plane, held weakly together by hydrogen linkages. Ring closure occurs in the 
organic ion between C(2) and C(5), resulting in a (non-planar) furanoid ring with a new asymmetric 
centre at C(5), yielding a C(4),C(5) cis diol. The structure has been refined to an R index of 0.12 for the 
1022 observed reflexions. 

Cell dimensions are given also for calcium 2-keto-D-gluconate, (calcium D-arabino-hexulosonate), 
Ca(C6HgO7)2.3H20; P212121; a= 10.43, b= 18"33, c= 9.50/~; Z=4, and possible structural relation- 
ships between the two compounds are discussed. 

Introduction 

The sugar acids have been shown to be particularly 
effective as sequestrants for calcium ions from alkaline 

* Present address: Department of Applied Physics, Brighton 
College of Technology, England. 

solution, their affinity for calcium being attributed to 
the formation, through coordinate and covalent bonds, 
of chelated rings between the metallic ions and the 
hydroxyl and carboxyl groups of the acid (Prescott, 
Shaw, Bilello & Cragwall, 1953; Mehltretter, Alexan- 
der & Rist, 1953). The identification of calcium 2-keto- 
gluconate in the growth products of micro-organisms 


